Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing.
نویسندگان
چکیده
During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells, RPG repression by rapamycin treatment also increases splicing efficiency. Downregulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two spliceosome mutations, prp11-1 and prp4-1, and globally restores splicing efficiency in prp4-1 cells. We conclude that the splicing apparatus is limiting and that pre-messenger RNAs compete. Splicing efficiency of a pre-mRNA therefore depends not just on its own concentration and affinity for limiting splicing factor(s), but also on those of competing pre-mRNAs. Competition between RNAs for limiting processing factors appears to be a general condition in eukaryotes for a variety of posttranscriptional control mechanisms including microRNA (miRNA) repression, polyadenylation, and splicing.
منابع مشابه
Linking Splicing to Pol II Transcription Stabilizes Pre-mRNAs and Influences Splicing Patterns
RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II (Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice...
متن کاملSodium Butyrate and Valproic Acid as Splicing Restoring Agents in Erythroid Cells of b-Thalassemic Patients
Background: b-Thalassemia is a common autosomal recessive disorder in human caused by a defect in b-globin chain synthesis. The most common mutations causing b-Thalassemia have been found to be splicing mutations. Most of which activate aberrant cryptic splicing/sites without complete disruption of normal splicing. IVSI-110 mutation, a common splicing mutation, leads to a 90% reduction of norma...
متن کاملIdentification of a Regulated Pathway for Nuclear Pre-mRNA Turnover
We have identified a nuclear pathway that rapidly degrades unspliced pre-mRNAs in yeast. This involves 3'-->5' degradation by the exosome complex and 5'-->3' degradation by the exonuclease Rat1p. 3'-->5' degradation is normally the major pathway and is regulated in response to carbon source. Inhibition of pre-mRNA degradation resulted in increased levels of pre-mRNAs and spliced mRNAs. When spl...
متن کاملHIV-1 Vpr: a novel role in regulating RNA splicing.
Pre-mRNA splicing is a critical step in gene expression for metazoans. Several viral proteins regulate the splicing of pre-mRNAs through complex interactions with the host cell RNA splicing machinery. Here, we focus on a novel function of HIV-1 Vpr, which selectively inhibits cellular and viral pre-mRNA splicing via interactions with components of the spliceosome complex. This review discusses ...
متن کاملA Conserved mRNA Export Machinery Coupled to pre-mRNA Splicing
Recent advances have led to a new understanding of how mRNAs are exported from the nucleus to the cytoplasm. This process requires a heterodimeric mRNA export receptor that is part of an elaborate machinery conserved from yeast to humans. Export of mRNAs is coupled to upstream steps in gene expression, such as pre-mRNA splicing, and to downstream events, including nonsense-mediated decay.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 51 3 شماره
صفحات -
تاریخ انتشار 2013